Eigenviews for Object Recognition in Multispectral Imaging Systems
نویسندگان
چکیده
We address the problem of representing multispectral images of objects using eigenviews for recognition purposes. Eigenviews have long been used for object recognition and pose estimation purposes in the grayscale and color image settings. The purpose of this paper is two-fold: firstly to extend the idealogies of eigenviews to multispectral images and secondly to propose the use of dimensionality reduction techniques other than those popularly used. Principal Component Analysis (PCA) and its various kernel-based flavors are popularly used to extract eigenviews. We propose the use of Independent Component Analysis (ICA) and Non-negative Matrix Factorization (NMF) as possible candidates for eigenview extraction. Multispectral images of a collection of 3D objects captured under different viewpoint locations are used to obtain representative views (eigenviews) that encode the information in these images. The idea is illustrated with a collection of eight synthetic objects imaged in both reflection and emission bands. A Nearest Neighbor classifier is used to perform the classification of an arbitrary view of an object. Classifier performance under additive white Gaussian noise is also tested. The results demonstrate that this system holds promise for use in object recognition under the multispectral imaging setting and also for novel dimensionality reduction techniques. The number of eigenviews needed by various techniques to obtain a given classifier accuracy is also calculated as a measure of the performance of the dimensionality reduction technique.
منابع مشابه
Object Recognition Using Eigenviews
We introduce a novel method to characterize the shape of objects under viewpoint variation for use in an object recognition task. Images of a collection of 3D objects captured under different viewpoint locations are used to obtain representative views (eigenviews) that encode the information in these images. Three techniques are used to extract eigenviews from a given collection of images, Prin...
متن کاملUrban Vegetation Recognition Based on the Decision Level Fusion of Hyperspectral and Lidar Data
Introduction: Information about vegetation cover and their health has always been interesting to ecologists due to its importance in terms of habitat, energy production and other important characteristics of plants on the earth planet. Nowadays, developments in remote sensing technologies caused more remotely sensed data accessible to researchers. The combination of these data improves the obje...
متن کاملAutomatic Road Detection and Extraction From MultiSpectral Images Using a New Hierarchical Object-based Method
Road detection and Extraction is one of the most important issues in photogrammetry, remote sensing and machine vision. A great deal of research has been done in this area based on multispectral images, which are mostly relatively good results. In this paper, a novel automated and hierarchical object-based method for detecting and extracting of roads is proposed. This research is based on the M...
متن کاملSpectral Separation of Quantum Dots within Tissue Equivalent Phantom Using Linear Unmixing Methods in Multispectral Fluorescence Reflectance Imaging
Introduction Non-invasive Fluorescent Reflectance Imaging (FRI) is used for accessing physiological and molecular processes in biological media. The aim of this article is to separate the overlapping emission spectra of quantum dots within tissue-equivalent phantom using SVD, Jacobi SVD, and NMF methods in the FRI mode. Materials and Methods In this article, a tissue-like phantom and an optical...
متن کاملMultispectral Imaging for Illumination Invariant Face Recognition
Under controlled illumination conditions, visual Face Recognition systems perform well for faces with low or no disguise [1]. Infrared (Thermal) Face Recognition provides an enticing alternative to Visible Face Recognition due to the relative insensitivity of IR imagery to illumination changes and disguise [2]. Image fusion is in fact a combination that extracts redundant and complementary info...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003